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Background: Spinal Muscular Atrophy (SMA) is a genetic disease that causes the loss 
of a survival motor neuron (SMN), leading to vital muscle atrophy. Aim: Despite 
numerous studies to find a cure for this disease, the best of these treatments is still 
suffering from some limitations and difficulties. It was found that treatments that 
focus on just one gene are not usually effective. Consequently, the current study 
investigates gene impacts and interactions by gathering an appropriate microarray 
dataset for various human SMA instances. In addition, embryonic stem cell samples, 
which are anticipated to play a significant role in the future treatment of the 
majority of incurable diseases. Materials and Methods: By using linear models for 
microarray data analysis (LIMMA), highly differentially expressed genes (DEG) were 
identified. Then, cluster these genes into modules using machine learning and 
weighted gene co-expression network analysis (WGCNA) algorithms. Results: By 
using the preservation methods, the foundation of interesting modules was 
evaluated between the collected cases. Moreover, the results of previous studies on 
SMN1, SMN2, NAIP, DYNC1H1, and PLS3 genes have proved that they are direct 
causes or modifiers of SMA disease severity. However, the change in the expression 
of these genes did not come at the forefront of the changed genes, which is the 
exact opposite of what is expected. Accordingly, other interesting modules were 
determined here as highly correlated modules with these genes. These modules’ 
genes were imported into Cytoscape for generating SMA networks, and finding their 
hub genes. Conclusion: These genes can be used as key genes for better analysis, 
diagnosis, and therapy development, such as BCL2, Cntn1, TYRP1, N4Bp2, and 
PFDN2. 
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INTRODUCTION 

A neurological disease, SMA runs in families as 
an autosomal recessive trait. The disease is 
characterized by the loss of muscle mass and 
the weakness of muscles that control 
movements such as crawling, walking, sitting, 
and moving the head. Furthermore, in severe 
cases of the disease, the breathing and 
swallowing muscles may be affected, resulting 
in the patient's death within a short period after 
suffering from the disease symptoms. These 
muscle problems cause progressive 
degeneration of specialized nerve cells called 
Survival motor neurons (SMN). This neuron can 
be found in the spinal cord and brain stem 

(Chaytow et al., 2018). It is estimated that 
1/10,000 live births are affected by SMA 
globally, which makes it one of the most 
common hereditary diseases causing childhood 
deaths (Anderson et al., 2003). At the same 
time, SMA carrier frequency varies per racial 
group from 1 in 38 to 1 in 72. Across all levels of 
severity, the disease is on the rise in countries 
where consanguineous marriage is on the rise 
(Chaytow et al., 2018) (Anderson et al., 2003). 

SMA results from a deficiency of an essential 
protein for keeping the survival motor neurons 
called SMN protein, which is generated by two 
very homologous genes. Telomeric SMN1 and 
its centromeric homology SMN2. These genes 
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are part of a 500 kbp inverted duplication on 
chromosome 5q13 with at least four genes. 
Therefore, they are susceptible to deletions and 
rearrangements. The SMN1 gene is the 
dominant gene for the production of the SMN 
protein. Hence, there must be at least one 
functional copy to avoid the disease. Otherwise, 
SMN protein derived from the gene SMN2 is the 
only source of protein for the affected individual 
in this case (Genetics Home Reference, 2017) 
(SMA Care series, 2009). Notably, these two 
genes differ only by five nucleotide changes, 
and the difference at codon 280 is the most 
important. In addition, the c-to-T substitution at 
position 6 of exon 7 in SMN2 affects the splicing 
of SMN2. This splicing change yields only around 
10% of the full-length protein per each SMN2 
copy, and the remaining is an unstable and 
truncated protein (Genetics Home Reference, 
2017). Accordingly, the severity degree of SMA 
disease inversely correlates with the SMN2 copy 
number. Therefore, SMN2 may be an important 
target for SMA therapy due to its role as a 
significant SMA disease modifier (Ludolph et al., 
2018). 

The severity of SMA disease is influenced by 
other genes besides SMN2, including zinc finger 
protein 1 (Zpr1), plastin 3 (Pls3), Dynein 
Cytoplasmic 1 Heavy Chain 1 (DYNC1H1), and 
Ubiquitin Like Modifier Activating Enzyme 1 
(UBA1) (Shawky et al., 2001) (Anderson et al., 
2003). In addition, some reports have 
demonstrated a correlation between SMA 
severity and neuronal apoptosis inhibitory 
protein gene (NAIP gene) deletion. However, 
the functional role of NAIP in the pathogenesis 
of SMA has not been fully elucidated (Anderson 
et al., 2003) (Hassan et al., 2020) (Shawky et al., 
2001) (Shawky & El-Sayed, 2011). Not the 
previous genes only. But also, some other 
modifier genes may result in less common types 
of SMA, such as X-linked SMA. This appears 
when mutations occur in the UBA1 gene, which 
participates in protein degradation within cell. 
Consequently, reducing this amount leads to 
protein build-up inside the cell and damages 
motor neurons (U.S. National Library of 
Medicine, 2017). SMA-LED is another type; 
Mutations in the DYNC1H1 gene caused the cell 
to lose the Dynein protein that transports 
cellular components from the  

junctions between neurons (synapses) to the 
center. The signals are transmitted from one 
neuron to another through this mechanism.  As 
a result, DYNC1H1 mutations decrease and 
prevent neuron signal transfer with time, 
resulting in missed control over muscle 
movement (Wirth et al., 2020).  

SMA patients are divided into five phenotype 
sub-types of SMA (0-IV). In addition, the 
character traits of the patient may identify the 
degree of muscular weakness and the age at 
which the muscle difficulties first appear (U.S. 
National Library of Medicine, 2017). An 
overview of possible diagnostic pathways for a 
person with symptoms similar to SMA disease is 
shown in Figure 1. Moreover, it illustrates the 
characteristics of the five types of illness, in 
which the modifier genes are the leading player 
in determining what degree of disease we are 
(Prior et al., 2019). 

Figure 1 illustrates the role of the SMN1 gene in 
differentiating SMA patients and the effect of 
modifiers genes on determining the severity of 
the disease and the characteristics of each 
grade of SMA. Stem cells have the capacity for 
self-renewal and cell-type differentiation. Stem 
cells support a variety of tissues, including the 
nervous system, heart, skeletal muscles, 
meniscus, tendons, ligaments, and labrum. To 
target certain tissues or organs, stem cell 
administration in combination with other 
therapeutic agents has the ability to improve, 
alter, or start local or systemic healing 
processes. Therefore, stem cells can be 
employed to convey chemicals created 
artificially for therapeutic purposes (Xiaowen, 
2020). 

Research Gap: Numerous studies have been 
conducted to find a cure for this disease, but 
even the best treatments still have limitations 
and difficulties. Genes typically cooperate 
rather than work alone; therefore, therapies 
that target one gene exclusively are ineffective 
in some cases (Chen & Tai-Heng, 2020). In 
addition, all genes associated with SMA disease 
and its severity have been linked directly or 
indirectly by previous studies. Therefore, there 
seems to be a significant correlation between 
these genes and certain SMA modules.  
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Figure 1. SMA diagnosis methods and their types 
 
Undoubtedly, the hub genes of these modules 
will contribute to solving the mystery of this 
disease, diagnosing it, or developing treatments 
for it. Moreover, further investigation should be 
made into the role of stem cells in this disease 
and its treatments. 

SMN-dependent and SMN-independent 
therapies are the two treatment approaches 
available for SMA (Mendell et al., 2017) (Corti et 
al., 2018). SMN-independent strategies aim to 
strengthen and maintain motor neurons, neural 
muscular junctions, and affected muscles to 
reduce disease symptoms. While, in the SMN-
dependent approach, the focus is on increasing 
the amount of SMN protein as the cause of the 
problem, either by editing the deleted SMN1 
gene or replacing the mutated one (Zolgensma). 
Furthermore, by treating SMN2 gene splicing 
issues (Nusinersen). On the whole, the purpose 
of this is to provide the body with enough SMN 
protein, a multifunctional and universally 
expressed protein (Ludolph et al., 2018) (Chen 
& Tai-Heng, 2020) (Mendell et al., 2017) (Corti 
et al., 2018). Although all previous treatments 
already have Food and Drug Administration 
(FDA) approval, and other continuous attempts 
have significantly impacted the severity of the 
disease, it still suffers from some limitations. 
Such as the very high costs, the danger and pain 
of repeated intrathecal injections in the back 
chain, and treatment under a certain age and 

weight, not above it. Not only the previous 
therapeutic strategies but also stem cells have 
an important share of studies on genetic 
diseases. However, numerous studies show that 
primary neural stem cells injected into the 
spinal canal engraft the spinal cord, enhance 
motor function, and prolong survival in patients 
with SMA. Unfortunately, until now, all the 
studies about stem cells being used to treat 
SMA and other genetic diseases are just 
experimental because this type of therapy has 
still not been thoroughly tested in clinical trials 
(YANG et al., 2019).  

Identifying and characterizing genes that result 
in SMA disease is considered a very important 
requirement for the successful development of 
new SMA therapies. Moreover, understanding 
the disease mechanism. Bioinformatics 
methods are considered the best and fastest to 
get this essential required information (Vamshi 
K. Rao et al., 2018) (Hensel et al., 2020). The 
data used in the current study was gutted from 
microarray experiments.  Microarray 
technology significantly monitors the gene 
expression levels for each gene on the genome-
scale under different conditions. All of these 
measured values are recorded in a matrix 
known as the Gene Expression matrix. 
Experience. Theoretically, the weighted 
network is the most suitable way to describe the 
relation and interaction between these genes 



 Nofal et al., 2023 
 

 

 

  IJCBR Vol. 7(1): 25-39 28 

together. But computationally, the analysis of a 
network is often restricted to a limited number 
of nodes (e.g., 2000 nodes) with top differential 
expressed genes (Zhang & Horvath, 2004). 
Various DEG tools are available, including the 
Empirical Analysis of Digital Gene Expression 
Data (Edge) R package, DESeq, DESeq2, baySeq, 
SAMSeq, and limma (Linear models for 
microarray data analysis).  

Due to its stability, LIMMA (https://limma.html) 
was preferred in the current study, even for 
experiments with a few arrays, complex 
experiments, or varying conditions. 
Furthermore, it can be applied to any 
quantitative gene expression technology such 
as microarrays, RNA-sequencing, or 
quantitative PCR (Ritchie et al., 2015). 

Despite the weighted network construction 
eliminating the information loss found in an 
unweighted network (Goh et al., 2007), 
biological significance is essential in biological 
networks (Goh et al., 2007). The network must 
be compatible with the scale-free topology 
feature to accomplish this. The number of hub 
genes within the network is far greater than the 
number of non-hub genes, according to its 
content. Furthermore, model fitting index R2 of 
the linear model, which correlates the 
frequency distribution of the connectivity p(k) 
to connectivity (k) itself, can be used to visually 
inspect whether approximate scale-free 
topology is satisfied or not (Zhang & Horvath, 
2004). Our current research used the WGCNA R 
package (https://cran.r/WGCNA/html) to 
achieve what we wanted in our designed 
network and divide the network into highly 
correlated modules using machine learning. 
Moreover, it interfaced with the Cytoscape 
program to visualize and identify the modules' 
hub genes. 

The clustering method is one of the 
unsupervised machine learning methods used 
for categorizing data into sets (Eisen et al., 
1998). Consequently, the current data is 
organized into sets of samples and sets of genes 
with shared patterns that are representative of 
the group (Modules). Objects can be grouped 
into hierarchical clusters with relationships 
between them specified, much like a 
phylogenetic tree. Furthermore, they can be 

grouped into non-hierarchical clusters 
(arranging items into clusters without defining 
the links between them). For instance, in the 
current work, each object (sample/ gene) is 
regarded as a cluster by a hierarchical 
agglomerative clustering algorithm (Kapp & 
Tibshirani, 2007). Significantly, calculating 
pairwise distance estimates for the items that 
will be grouped is the first stage. Then, clusters 
are created from related items based on the 
pairwise distances between them. Following 
this, the pairwise distances between the 
clusters are once again determined. Further, 
related clusters are iteratively joined until all 
the items are included in a single group. Indeed, 
a dendrogram may be used to visualize this 
information, as shown in Figure 3 and Figure 7. 
Accordingly, the distance from the branch point 
is a reference for separating two groups or 
items (Zhang & Horvath, 2004) (Eisen et al., 
1998). 

This research paper contributes to the 
enrichment of stem cell studies for SMA 
treatment by using embryonic stem cell data 
and correlating effective SMA genes with the 
modules of different SMA cases. The method of 
module preservation evolution was used here 
to determine the hub genes of various cases of 
SMA. Using these genes as key genes may 
contribute to the development of better 
diagnostic procedures and therapies.  

MATERIALS AND METHODS 

It has been reported that Polymer Chain 
Reactions (PCRs) have been used in several SMA 
studies to correlate phenotype with genotype 
(Shawky et al., 2001) (Hassan et al., 2020) 
(Shawky & El-Sayed, 2011). Still, the PCR 
method does not consider the interactions 
between all genes. In contrast, other studies 
have used gene expression technologies such as 
RNA-sequencing or microarrays to study gene 
interactions. This is more accurate and precise 
than studying the effects of a single gene alone 
on disease diagnosis (Hensel et al., 2020). 

The current study uses a publicly available 
microarray dataset for SMA disease (Carriers 
and several severity degrees) 
(https://www.ncbi.nlm.nih.gov/geo/) to get the 
variation in gene expression levels, which might 
reflect the pathogenic process of illness. 
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Moreover, to support stem cell research in SMA 
disease analysis, we gathered several stem cells 
samples that were deposited on the same 
platform as our SMA data (GPL6947) for this 
publication. These samples, however, were 
taken from tests that were conducted in various 
settings. In accordance with reasonable 
exceptions that permit the completion of the 
study, abnormal samples were removed and 
samples with circumstances that were 
comparable to those of the samples taken for 
the aforementioned disease were preserved. 
accordingly, as shown in Figures 3 and 4, by 
using Hierarchical sample clustering, principal 
component analyses (PCA), and Box plots to 
detect outlier samples. This may ensure a 
proper proportion of the compatibility of the 
experimental conditions of the collected 
samples. An overview of the current work steps 
is shown in Figure 2, starting with the 
preprocessed data and moving on to its aim. 

In order to construct a gene-weighted network, 
which is widely regarded as the most effective 
method for describing the interaction between 
genes, there are a number of steps that must 
first be completed.  

These steps involve meeting certain topological 
network criteria in order to account for 
biological criteria. Following these steps, shared 
and unshared modules between different cases 
are identified for the purpose of further study 
using machine learning and preservation 
techniques. 
 

 
Figure 2. Graphical abstract 

Using the package ‘limma’ that was built under 
free R version 4.0.3, a significance test is used to 
identify highly differentially expressed genes 
(DEGs) between test and control samples (YANG 
et al., 2019). The LIMMA package provides 
stable analysis even for experiments with a few 
arrays and complex experiments with various 
conditions. Furthermore, it applies to data 
obtained via different quantitative gene 
expression technologies, including microarray, 
RNA-sequencing, and quantitative PCR (Zhang & 
Horvath, 2004) (Eisen et al., 1998). The output 
genes of the LIMMA package would be collected 
in a gene expression matrix for further analysis. 

Understanding how genes interact is the first 
step to understanding a complex gene 
interaction system. Based on intuitive network 
concepts (e.g., modules and connectivity), 
networks are considered the most effective 
method for analyzing complex interactions 
between nodes. There are many domains of 
networks covered by these nodes. Some of 
them can be applied to the biological field. Such 
as protein-protein interaction networks (Ritchie 
et al., 2015), cell-cell interaction networks (Goh 
et al., 2007), and gene co-expression networks 
(Eisen et al., 1998) (Yang et al., 2016). 
Moreover, they can be applied to personal 
accounts on social networks, Internet sites, and 
other fields.  

For constructing the current study network 
between the gutted DEGs, a similarity matrix 
(Sij) between gene expression profiles was 
calculated using a correlation method to 
measure their degree of concordance. Indeed, 
Pearson correlation coefficients are generally 
utilized as co-expression measures in linear 
relationships to establish the relevance of gene 
co-expression networks (Albert & Réka, 2005). 
Then, the similarity matrix is transformed into 
the adjacency matrix (aij). It does describe the 
strength of the link between each pair of genes. 
In reality, this transformation is accomplished 
by threshold the coefficients of the similarity 
matrix with a suitable adjacency function. 
Significantly, this function depends on the type 
of the constructed network, unweighted or 
weighted. For the first network, the used 
adjacency function, such as the signum 
function, provides a hard threshold, leading to 
the connection strength between any two 
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points having a discrete value (0 or 1). Not only 
this type of network makes the value of the 
threshold very sensitive. But this also leads to a 
significant amount of information loss in the 
upcoming analyses. The disadvantage of the 
previous type was eliminated in the weighted 
network by using a soft threshold provided by a 
different kind of adjacency function. For 
example, the sigmoid function and the power 
adjacency function, both of which were used in 
the current study with only a single parameter 
(β), as shown in Eq. (1) (Zhang & Horvath, 2004). 

aij = power (Sij, β) ≡ │ Sij │β.                            Eq. (1) 

The adjacency function parameters a (i,j) are 
chosen to use mean connectivity criteria 
(mean(k)= ∑ ki/n !

𝟏 ). Biological networks were 
created using topological criteria that combined 
biological significance with statistical 
significance. It takes into consideration the 
influence of neighboring genes on each gene 
(topological overlap matrix (TOM)) Eq. (2) 
(Zhang & Horvath, 2004) (Albert & Réka, 2005). 

TOM(i,j) = |N1 (i) ∩	N1 (j) |&aij 
'()(|N1 (i) |	&			|N1 (j)|)	&-.aij

 Eq. (2) 

Scale-free topology refers to the frequency 
distribution of the connection 𝑃(𝑘). 
Significantly, it implies hub nodes are connected 
to many other nodes. The goodness of fit of 
linear model fitting 𝑅/ index, which measures 
the goodness of fit for linear model fitting 𝑝(𝑘), 
is tested using scatter plots, log transformation, 
and 𝑘 Scale Free Topology criteria for network 
development (Yang et al., 2016) (Albert & Réka, 
2005). In addition, several biological issues 
reported that intramodular connectivity 
correlates with gene importance more strongly 
than the whole network (Horvath S. , 2011), 
thus adding validity and confidence to the 
network-based approach to identifying 
diseases' molecular signatures (Chen & Tai-
Heng, 2020). Notably, it was found that the 
node dissimilarity method (1-TOM) was an 
effective distance measurement for biologically 
meaningful modules. Moreover, it was 
combined with a hierarchical clustering method 
and a dynamic tree-cutting algorithm to detect 
gene subsets that had strong relationships 
(modules) (Stuart, 2003) (Carter, 2004). 
Significantly, it is noteworthy that the 
corresponding modules' eigengene (𝐸) can be 

correlated to each other. As the first component 
of a specific module, it can indicate the gene 
expression patterns of that module (Jeong, 
2001) (Hartwell, 1999). Therefore, dynamic 
tree-cutting algorithms may identify modules 
whose expression profiles are semi-identical 
(Stuart, 2003). Thus, the final modules were 
obtained by merging the modules whose gene 
expressions are strongly correlated (Merging 
Modules). The current study used the package 
‘WGCNA’ that was built under R version 4.0.4 
for network construction, topological 
properties calculations, and module detection. 

Furthermore, it can be interfaced with external 
software such as Cytoscape for network 
visualization and identifying the hub genes of all 
gutted modules. Often, it is found that the 
relationship between R2 and the threshold 
parameter (𝛽) of the adjacency function follows 
approximately a saturation curve. Therefore, 
based on the scale-free topology criterion, the 
initial threshold parameter value at which 
saturation is achieved should be used as long as 
it is higher than (0.8). Alternatively, the default 
threshold parameters for unsigned and signed 
correlation networks are (𝜷 = 	𝟔) and (𝜷= 12), 
respectively (Jeong, 2001). 

Not only are preservation methods used to 
evaluate the clustering efficiency, but also to 
find the previous gutted modules in other SMA 
types, carriers, or stem cells. These methods can 
discover interesting modules. As shown in Eq. 
(3,4), and Table 1, Composite preservation 
statistics (Zsummary), which can be used to quickly 
evaluate several modules across many 
networks with different preservation scales 
based on specific thresholds, can be applied to 
this task (Eisen et al., 1998) (Kapp & Tibshirani, 
2007) (Horvath & Steve., 2011). 

Z  =  Z connectivity  +  Z density  
/

  Eq. (3)                        

Zsummary  =  observed - mean permuted  
01	23456731

   Eq. (4)                      

The Zsummary, however, may not be acceptable 
when comparing modules with extreme 
differences in size since it largely depends on 
module size (Horvath & Steve., 2011). 
Accordingly, the Median Rank preservation 
statistics (Eq. 5) will be more appropriate.  
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 Table 1. Composite preservation (Zsummary) statistics 
threshold guidelines 

 

Median Rank= Median Rank . density + median Rank .connectivity
!

 
 Eq. (5) 

Furthermore, since it uses observed 
preservation statistics instead of 𝑍 statistics or 
𝑝 −values, it is less dependent on module size. 
Compared to a module with a higher median 
rank, one with a lower median rank usually 
shows superior observed preservation 
statistics. These statistics make it possible to 
detect which modules are highly preserved in 
most cases. It also helps identify the similarities 
and differences between these cases to 
understand the disease mechanism better, 
saving time, money, and effort (Horvath S. , 
2011) (Shengni et al., 2020) (Horvath et al., 
2007). SMA disease severity and its likelihood of 
occurrence can also be determined by other 
critical modules that are highly correlated with 
highly effective genes such as SMN1, SMN2, 
NAIP, Pls3, and DYNC1H1 (Anderson et al., 
2003) (Shawky et al., 2001). According to 
previous studies, these genes are the causative 
and modifier genes. However, they did not 
appear in front of differentially expressed genes 
between different SMA cases. Therefore, the 
current study's primary objective was to 
examine these genes' mutational effects on the 
network modules' genes with the highest 
correlations to these genes. 

Here, Cytoscape program v 3.8.0 was used for 
recreating molecular networks and detecting 
hub genes. Gene lists produced by highly 
connected hub gene selection methods are 
known to be more meaningful than those 
produced by standard statistical analysis (Jeong, 
2001) (Zhang& Horvath., 2005) (Horvath et al., 
2007). Therefore, another objective of this 
study is to use the hub genes in the selected 
modules as novel genes for studying SMA 
pathogenesis or as key genes for improving 
patients, carriers, prenatal diagnosis, and 
therapy development. 

Data collection and preprocessing 

In the present study, SMA datasets were 
collected from the (GEO) databases 
(https://www.ncbi.nlm.nih.gov/geo/), which 
are deposited on the (GPL6947) Illumina 
HumanHT-12 V 3.0 expression bead chip. A total 
of 12 samples of GEO (GSE58316) were 
recruited from 12 people without any 
treatment. SMA severity degrees are 
categorized as follows: (5: SMA Carrier), (2: 
Severe SMA), and (5: Mildly SMA). In addition, 
for purposes of subsequent study, all samples 
were considered processed and hybridized 
under identical circumstances. 

SMA treatment with stem cells and SMN 
restoration may be complementary. 
Consequently, understanding how stem cells 
work in SMA treatment is a great goal. In spite 
of the fact that there are a significant number of 
preclinical research involving stem cells for the 
treatment of SMA, we were almost 
unsuccessful in our search for samples from 
these studies. The author searches for stem cell 
samples that have been put on an Illumina 
HumanHT-12 V3.0 expression beads chip using 
the identical processing procedures as before 
(GPL6947). In light of the aforementioned, our 
interest in stem cell research as a potential 
treatment for SMA led to our willingness to 
contribute to the expansion of stem cell 
research for SMA treatment. For example, six 
samples of embryonic stem cells were obtained 
from separate investigations (GSE29784 (4 
samples), GSE35029 (1 sample), and GSE31845 
(1 sample), and they were subsequently placed 
on the Illumina HumanHT-12 V3, version 
(GPL6947). 

Moreover, anomalies were detected by 
hierarchical clustering of machine learning 
science for all 18 samples with vision cutting at 
different heights. To improve the hypothesis, 
the same hybridization and processing 
conditions are applied to all samples. 
Accordingly, 16 samples were identified, as 
shown in Figure 3. In addition to hierarchical 
clustering, principal component analysis and 
box plots were used here to verify the validity of 
the assumption. Also, both methods remove 
only the same previous two samples, as shown 
in Figure 4.  

Zsummary>10 Strong evidence supports the 
module's preservation. 

2<Zsummary<10 Weak to moderate preservation 
evidence is present. 

Zsummary < 2 There is no proof the module was 
preserved. 
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Figure 3. Hierarchical samples clustering to detect outlier 
samples. A) 1 sample is outer at cutting high=30000 and 
17 samples are remaining, B) 1 sample is outer at cutting 
high = 200 and 16 samples are remaining, C) up to cutting 
high = 70 no outer samples and 16 samples are 
remaining. 
 
Furthermore, ensure that the 16 samples have 
the same hybridization and processing 
conditions for future research. 

COMPUTER RESULTS AND SIMULATION 

According to Figures 3 and 4, two anomaly 
samples with a height of 70 were removed. 
Outlier samples were determined using 
principal component analyses and box plots for 
all samples. Outliers were then removed from 
the same two samples. As a result, the 
remaining 16 samples consist of five carriers, 
two severe carriers, four mild carriers, and four 
stem cell carriers. 

Therefore, it can be assumed that the 
hybridization and processing conditions for all 
16 samples are adequate for further analysis 
within acceptable limits. Furthermore, these 16 
samples were preprocessed as follows.  

 
Principal Component 

 

 

 
 
Figure 4. principal component analyses and Box plot to 
detect outlier samples. A) first principal component is 
suitable for analysis of all 18 samples, B) all samples have 
an equivalent first and second principal component 
analysis except 2 samples, C) box plot for all 18 samples 
showing 2 outlier samples, D) box plot for the same 
remaining 16 samples with assumption that the 
hybridization and processing conditions were confident for 
further analysis. 
 
First, using the library of (AnnotationDbi) and 
(org.Hs.eg.db) packages in package 
‘BiocGenerics’ that was built under R version 
4.0.3 (https://annotation/html/), all duplicate 
probe sets in each microarray dataset were 
identified as important features (GO, Entrez ID). 
In the next step, delete probe sets that do not 
have “Entrez id” or “Gene name”. Then, the 
collected samples are further grouped, and 
probes of each group are checked for excessive 
missing values. Finally, the remaining probe set 
of genes (SMA_ FII) represents the current gene 
set that will be analyzed further. 
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Currently, six DEG cases are available, which can 
be divided into two groups. Each of them 
contains three DEG cases. For the first group, 
embryonic stem cells were compared to the 
SMA types tested (Carrier SMA (DEG), Sever_ 
SMA (DEG2), and Mildly SMA (DEG3)) using a 
threshold (P= 0.99 and FC= 1.5).  

The resulting gene number is sufficient for each 
type, as shown in Figure 5A and C. In the second 
group, the test and control data were mutually 
compared with three types of SMA data to 
determine the DEGs for the three cases (DEG4: 
(Mildly_SMA vs. Carrier SMA), DEG5: (Carrier 
SMA vs. Sever_ SMA), and DEG6: (Mildly_ SMA 
vs. Sever_ SMA)) to determine why the severity 
discrepancy exists. 

However, when the same threshold was used in 
the first group, the results showed that the gene 
number was insufficient, as shown in Figure 5B. 
Consequently, this group would be further 
analyzed using the top 2000 differentially 
expressed genes with a different threshold for 
each case as shown in Figure 5D. As illustrated 
by two volcano plots (Figure 5C and D). 
Determining the common genes and the 
different genes between the different SMA 
types and stem cells will help analyze the 
pathological mechanism of SMA in other 
conditions at the molecular level.  

Furthermore, explain more why there is a 
severity discrepancy in SMA types. We would 
take the expressed values of SMA carriers' 
genes derived from DEG4 (Mildly SMA vs. 
Carrier SMA) for clustering genes to modules 
and identifying the hub genes for each module. 
Moreover, identifying the interesting modules 
concerned with different cases for further 
analysis. These interesting modules were 
determined here as highly correlated modules 
with effective genes in SMA, which are already 
mentioned in previous studies. 

Network construction and modules detection 

Using the WGCNA R package, the similarity 
matrix was calculated by applying the Pearson 
correlation method to the gutted carrier gene 
expression matrix. Then, by applying the 
protocol of (WGCNA) to determine the 
parameter of the adjacency function (𝜷) as in 
equation (1).  

Accordingly, Figure 6 illustrates the value of the 
soft threshold at the first saturation curve (𝜷 =
	𝟕)  at which the constructed weighted network 
has good free topological criteria. After that, the 
similarity matrix was transformed into an 
adjacency matrix. Using equation (2), the 
adjacency matrix was transformed into a 
topological overlap matrix, which considers 
biological significance in addition to statistical 
significance. According to the protocol of the 
WGCNA method, the soft threshold of the 
adjacency function that ensures the free 
topological criteria of the designed weighted 
gene co-expression network (𝜷 = 𝟕) at the first 
saturation curve and R2 >0.8, and its equivalent 
mean connectivity of the network.  

Unsupervised machine learning was used to 
generate the initial modules named dynamic 
modules in Figure 7B. As it happens, the node 
dissimilarity method (1- TOM) in conjunction 
with a dynamic tree-cutting algorithm for the 
hierarchical clustering with a minimum module 
size of 30 genes was used. However, the 
dynamic tree-cutting algorithm combines the 
advantage of both hierarchical and k-mean non-
hierarchical clustering. But some modules are 
highly correlated among all the resulting 
modules (Zhang & Horvath, 2004).  

Dynamic Module Eigengenes was calculated as 
the first principal component. Moreover, these 
modules are related by correlating the 
corresponding modules' Eigengenes (E) to each 
other in a hierarchical clustering shape, as 
shown in Figure 7A. Furthermore, the red line in 
Figure 7A represents a cutting height=0.25. 
Finally, the modules at this line were merged 
since their genes are highly co-expressed (more 
than 0.75 correlation), obtaining the final 
modules (Merging modules) as shown in 
Figures. 7B and C.  

Figure 7 illustrates a hierarchical clustering of 
the initial clustered modules using the 
corresponding modules' Eigengenes (E) to 
represent the correlation between each other 
and merging the highly correlated modules 
(>0.75) at the red line (A). The number of genes 
per each merging module is shown in (C). 
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Figure 5. Differentially Expressed Genes (DEGs) with 
certain thresholds (A, B) and Volcano Plots for 
Differentially Expressed Genes (DEGs) (C, D). 
 

          
Soft Threshold (Power) 

Figure 6. The soft threshold for adjacency function 

 

 
 
Figure 7. Modules detection 
 
By considering the modules of the current 
network (Carrier SMA in DEG4) as a reference, 
module preservation methods were used here 
to evaluate the efficiency of the module’s 
clustering process. Certainly, by setting the 
current network’s data as test and control data. 
As shown in Figure 8, all modules are strongly 
preserved (Zsummary > 10), indicating that the 
module clustering process is efficient.   

Figure 8 illustrates that the zsummary of all 
merging modules>10 which means high 
preservation that indicates good efficiency of 
the clustering process. The current network can 
also be compared with other test networks, 
such as the Mildly SMA patients’ network and 
the embryonic stem cells network, to identify 
each preserved module (Table 2).  

Also, other interesting modules were 
determined here as highly correlated modules 
(≥±0.7) with certain genes such as SMN1, SMN2, 
NAIP, DYNC1H1, and PLS3, which have a direct 
relationship with SMA disease and its severity. 
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Table 2. The interesting Modules in different study cases Vs. SMA carriers 
 

Module Mildly SMA Embryonic stem cells SMN1 SMN2 NAIP DYNC1H1 PLS3 

Tan        

Cyan     Ö Ö Ö 

Light yellow Ö       

Dark olive green    Ö    

Yellow Ö Ö      

Black   Ö Ö  Ö Ö 

Grey60    Ö   Ö 

Magenta Ö Ö      

Orange     Ö Ö Ö 

Steel blue  Ö      

Dark orange    Ö Ö  Ö 

Dark red    Ö    

Light green   Ö Ö    

Red   
 
 
 
 

  Ö   

 

 Table 3. The top 10 hub genes in SMA Carriers Modules 

 

These genes have been explained in several 
previous studies. The most highly connected 
intramodular genes (Module’s hub genes) were 
determined using the Cytoscape program 
(https://cytoscape.org/) for all clustering 
modules (Table 3) (Shengni et al., 2020). 

DISCUSSION 

The recessive mutation in the SMN1 gene that 
gives rise to the hereditary illness known as 
spinal muscular atrophy (SMA) results in the 
loss of a survival motor neuron (SMN), which 
causes the muscles that are necessary for life to 
weaken and atrophy. It is the most prevalent 

cause of infant death associated with genetic 
defects. Despite extensive research to discover 
a solution for this illness, even the most 
effective medicines still have significant 
restrictions and challenges. Based on a human 
microarray dataset for various SMA instances 
from the Gene Expression Omnibus (GEO) 
databases. The current study investigates how 
genes impact and interact with one another. 
Stem cells have the ability to differentiate into 
numerous types of cells and to self-renew.  

Stem cell injection in conjunction with other 
therapeutic treatments has the potential to 
enhance, modify, or initiate local or systemic 

Module 1 2 3 4 5 6 7 8 9 10 

Tan TAF8 SORCS2 MPEG1 ADH1B NR2F6 SHROOM4 PROS1 ZSCAN4 TUBA3D BMP10 

Cyan EEF2K GRIA1 GFAP ZNF691 SPRYD3 PDCD2 TAOK1 GGA2 SGK2 SMARCD1 

Light yellow ZMAT3 TMEM98 TCF4 SBF1 GRM6 NFAT5 PHF21B SLC10A6 PAPOLG NDUFS6 

Dark olive green TC2N NFKBIL1 CHST3 RBMS3 CACNA1E RPL8 TIE1 ZNF658B ZNF304 TREH 

Yellow PARP4 PLEKHA3 Bcl2 NME6 RUVBL2 LPCAT1 SEMA4B ZNF131 UBE2T SERPINI2 

Black TRPM4 HYPK SPRYD4 EPC2 FAM86B1 DLG5 NCF4 TDRD1 ATP6V0E2 ABCA5 

Grey60 DSG3 OR1M1 ZBTB25 APOM TMEM207 NMNAT3 CD247 RALGPS1 RGS8 DCTN6 

Magenta RANBP1 Cntn1 RASGRP3 CD300C ENDOG GPATCH4 ZNF589 COPS6 U2AF1 NCALD 

Orange THAP11 YIPF2 NUDCD2 FOXP1 OCEL1 NIN MRPS18A ABHD14A GPC6 TP53 

Steel blue BAGE3 IREB2 FBXO4 CD63 TYRP1 UBE2J1 SNORD36A RPS26P10 SERF1B HDAC11 

Dark orange ARR3 TIMP3 STEAP1 IRF5 PPIB ALG5 OR4C45 ADH5 MYOM2 PRRG2 

Dark red N4BP2 PFDN2 SPINK4 ARMC4 MMAB SHISA3 OR8D4 GTF2H4 PI4KB VIT 

Light green PAK2 DPRXP4 MTX2 GDF7 BAGE5 PARP14 SLC22A9 OR10A6 CKAP4 PTGIR 

Red CENPN TAS2R38 RAD23B OR4A15 SFMBT2 ZNF19 OR52E2 CHD7 TARS2 TULP1 
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healing processes to target specific tissues or 
organs. As a result, stem cell can be used to 
deliver synthetic molecules for therapeutic 
purposes. Several stem cell samples were 
deposited on the same platform as our SMA 
data (GPL6947) as part of our efforts to support 
stem cell research in SMA disease analysis. 

However, these samples were gathered under 
various experimental settings. Using 
hierarchical clustering, abnormal samples were 
eliminated, and those with conditions 
comparable to those of the samples taken for 
the aforementioned disease were retained, 
with acceptable allowances allowing the 
analysis to be completed. In addition, PCA and 
boxplot were used to identify outlier samples 
and approve the remaining samples based on 
the assumption that the hybridization and 
processing conditions for all 16 samples are 
sufficient for further analysis within acceptable 
limits. 
 

 

 
Figure 8. Modules preservation to check clustering efficiency 

 

The preprocessing steps have been carried out 
on the genes of the SMA samples using 
Bioconductor software packages and libraries. 
The highest differentiated expression genes 
were determined for each of the four available 
SMA types (SMA carriers, mildly SMA, severe 
SMA, and embryonic stem cells) using the 
LIMMA package. Consequently, the Volcano 
plots will help professionals analyze the causes 
of SMA severity degree more thoroughly by 
identifying genes unique to every DEG case or 
common to two or more DEGs. 

Networks are the best way to represent 
complex interactions between DEGs. The 
weighted network was preferred in the current 
work rather than the unweighted one. For the 
following reasons, the selection of the value of 
its threshold is less sensitive. It saves 
information from losses more than the 
unweighted one, and therefore, it provides 
more accurate results for further analysis. The 
WGCNA R software package calculated the 
similarity matrix by applying a Pearson 
correlation coefficient to the DEG matrix. Then, 
the WGCNA package's protocol was used to 
obtain the appropriate soft threshold of the 
adjacency function and accordingly transform 
the similarity matrix into an adjacency one that 
describes the strength of the connection 
between each pair of genes. However, the 
previous network construction steps were 
verified for statistical significance only.  

It is better in the biological network to consider 
the biological relevance also by looking at 
shared neighbors. This significance can be taken 
into consideration as it occurs in the current 
study and in (Yang et al., 2016)  study where 
they used the topological overlap criteria, which 
means that any two individuals may belong to 
the same clique (module) if they have the same 
friends. Moreover, the biological significance 
can be added as in (YANG et al., 2019) using the 
guilt-by-association method. It means that 
similar features such as genetic or physical 
interactions are commonly shared by genes 
with similar functions. However, the study 
presented on SMA disease (YANG et al., 2019) 
has some weaknesses as their data was based 
on Duchenne muscular dystrophy disease not 
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on SMA disease in accordance to their state. The 
analysis treated the DEGs network as a whole, 
not with clustered modules. However, 
intramodular connectivity correlates more 
strongly with gene significance than the whole 
network (Zhang & Horvath, 2004).  

In the current work, the WGCNA package and 
the hierarchical clustering machine learning 
were used for gene module detection, then the 
module preservation methods were used to 
check the clustering efficiency. Further, 
the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) v2022q1  
https://david.ncifcrf.gov/ (Accessed on 15/ 5/ 
2022) as a gene set enrichment analysis (GSEA) 
tool was used to remove genes with unknown 
functions from each module (Huang et al., 
2007). In addition, the WGCNA package 
interfaced with the Cytoscape program to 
construct a visualized network and determine 
the hub genes for each module.  

Finally, the interesting modules are defined per 
each case study as the common modules 
between SMA carriers and those SMA cases or 
Embryonic stem cells. Despite the proven 
significant effect of some genes such as SMN1, 
SMN2, NAIP, DYNC1H1, and PLS3 on the 
occurrence of the SMA disease and the change 
in its severity, these genes did not appear in the 
forefront of the differentially expressed genes 
among the different cases. Consequently, 
another consideration for the interesting 
modules is the highly correlated modules of the 
current SMA network with these specific SMA 
effective genes. Indeed, these modules and 
their hub genes are at the forefront of major 
contributions to the current work. 

Early studies have linked several of these hub 
genes to SMA. Such as BCL2 (a pathway in 
skeletal development) (Horvath & Steve., 2011) 
(Tibshirani & Walther, 2005), Cntn1 (a path in 
nervous system development) (Horvath & 
Steve., 2011), and TYRP1. The effects of this may 
result in brain and nervous system injury (Chen 
& Tai-Heng, 2020) (Langfelder et al., 2011) 
(Kapp & Tibshirani, 2007). Several genes have 
not been found in previous SMA studies, yet 
they play a related role, such as the N4Bp2 
gene, which regulates transcription-coupled 
DNA repair. In addition to multiple transcript 

variants encoding different isoforms of PFDN2, 
this gene is annotated as a chaperone for 
protein folding and one that binds unfolded 
proteins according to Gene Ontology (GO). 
Moreover, the TAF8 gene is related to 
Neurodevelopmental disorder with severe 
motor impairment, absent language, cerebral 
hypomyelination, and brain atrophy. Hub genes 
of SMA modules were identified to study the 
causes of disease and its severity variation and 
to develop better diagnoses and therapies 
(Krebs et al., 2006). 

CONCLUSIONS 

SMA patients and their families bear a 
considerable burden in the absence of effective 
trials that treat the disease intensity. This is 
incompatible with our desire for everyone to 
live a healthy and safe life. Therefore, it seems 
likely, that this work will benefit these patients 
and their families. We join the convoys of 
researchers who have this noble goal of treating 
the diseases that afflict humanity in general and 
the SMA disease in particular. Furthermore, 
since the genes usually do not work alone but 
cooperate with each other, the differences in 
gene expression levels can be used to construct 
a weighted gene network that can reflect the 
interaction between genes. Further, combining 
machine learning, LIMMA, WGCNA, GSEA, and 
Cytoscape program can analyze SMA and stem 
cells data obtained from the GEO database and 
provide insight into the molecular mechanisms 
of disease. SMA key genes can be predicted in 
different cases to improve diagnosis and 
therapy development for patients, carriers, and 
prenatal diagnosis. This pilot study explores 
several genes to be used as key genes for 
several case studies. For each case study with 
respect to the carrier case, it’s interesting 
modules are illustrated in Table 2. Then, the hub 
genes for these modules, which are considered 
the hub genes of this specific case, are found in 
table 3. This work offers critical information for 
future research on treatments and disease 
processes in SMA, even if the functions of these 
target genes in the pathogenesis of SMA are still 
not apparent. 

LIMITATION OF THE STUDY 

Embryonic stem cell data with identical 
experiment circumstances, SMA animal data for 
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animal model research, and extra-human SMA 
samples were not included in our research 
because they were not available. When all of 
these considerations are taken into account, the 
outcome will be more favorable. Under the 
initiative of the President of the Arab Republic 
of Egypt and NOVARTS to treat Egyptian SMA 
patients (less than two years): We wanted to 
conduct this pilot study on a sample of Egyptian 
SMA patients (less than 2 years old) before and 
after therapy with Zolgensma in order to gain a 
better understanding of the genes most 
affected by the drug, which would aid in SMA 
treatment and diagnosis. In addition, we want 
to conduct this pilot study on SMA patients of 
varying ages after therapy with Zolgensma in 
order to address irreversible SMN degenerative 
processes. 
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HIGHLIGHTS 

• The highly differentially expressed genes 
(DEG) were identified using LIMMA Package. 

• stem cells have an important share of studies 
on genetic diseases. 

• Network construction and module detection 
by using clustering and the WGCNA package. 

• highly correlated modules with effective 
genes in SMA were identified. 

• The common modules for different SMA 
types were identified by preservation 
methods. 
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