
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Carbon Nanostructures as Promising Targeted Drug 
Delivery Systems of Anticancer Agents 

 
Nahla A. Kasem, Hatem Sarhan, Zeinab Fathalla, and Mahmoud 
M. A. Elsayed 

 



INTERNATIONAL JOURNAL OF CANCER AND BIOMEDICAL RESEARCH (IJCBR) 
 

R E V I E W  A R T I C L E  
 

 

IJCBR (jcbr.journals.ekb.eg) is published by Egyptian Society of Cancer Research (eacr.tanta.edu.eg) and sponsored by the Egyptian Knowledge Bank (www.ekb.eg) 

Carbon Nanostructures as Promising Targeted Drug Delivery 
Systems of Anticancer Agents 
Nahla A. Kasem1, Hatem Sarhan2, Zeinab Fathalla2, and Mahmoud M. A. Elsayed1 
1Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Egypt 
2Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Egypt 
 

   
   

Nanotechnology has opened new paths for cancer treatment, with carbon 
nanostructures (CNSs) becoming drug delivery vehicles. This review examines 
fullerenes, carbon nanotubes (CNTs), graphene, and their derivatives as 
effective drug delivery vehicles for anticancer therapies. Their high surface area, 
ease of functionalization, exceptional thermal and electrical conductivity, and 
ability to cross biological barriers make them ideal candidates for improving 
anticancer drug specificity, bioavailability, and therapeutic efficacy while 
minimizing systemic toxicity. The biocompatibility and changeable surfaces of 
CNSs provide targeted delivery to treat cancer cell heterogeneity. This precision 
targeting reduces chemotherapy side effects. Adding ligands, antibodies, and 
peptides to CNSs makes them more selective for cancer cells, letting the 
therapeutic payload go to the tumor site. Because they absorb a lot of light, 
graphene-based nanostructures can be used in photothermal therapy and 
photoacoustic imaging to treat and keep an eye on cancers without cutting them 
open. CNSs in multimodal cancer treatment techniques, such as radio-
chemotherapy, may improve cancer treatment. After clinical research and 
biocompatibility improvements, CNSs could transform cancer treatment with 
more precise, efficient, and less toxic choices. Thus, using carbon nanostructures 
in cancer treatment marks a breakthrough in nanomedicine and a new age of 
focused and effective cancer treatments. 

Keywords: Drug delivery, Carbon nanostructures, Cancer therapy, Nanomedicine 

Editor-in-Chief: Prof. M.L. Salem, PhD - Article DOI: 10.21608/JCBR.2024.250410.1323  
 

 

Article history 
Received: November 22, 2023 
Revised: January 16, 2024 
Accepted: January 24, 2024 
 
Correspondence to 
Mahmoud M.A. Elsayed 
Department of Pharmaceutics  
and Clinical Pharmacy, 
Faculty of Pharmacy,  
Sohag University, Egypt  
Tel.: +201227660470 
Email: 
mahmoudalmenshawy@pharm.sohag.
edu.eg  
 
Copyright 
©2024 Nahla A. Kasem, Hatem Sarhan, 
Zeinab Fathalla, and Mahmoud M. A. 
Elsayed. This is an Open Access article 
distributed under the Creative 
Commons Attribution License, which 
permits unrestricted use, distribution, 
and reproduction in any format 
provided that the original work is 
properly cited. 

 

 

INTRODUCTION 

Cancer remains one of the most challenging 
diseases to treat, with conventional therapies 
often plagued by nonspecific distribution, 
suboptimal bioavailability, and severe side 
effects (Gyanani et al., 2021). The advent of 
carbon nanostructures (CNSs) has offered a 
promising alternative due to their distinctive 
features (Jha et al., 2020). CNSs can conjugate 
with various anticancer drugs, ensuring 
targeted delivery that can increase the drug's 
concentration at the tumor site while sparing 
healthy tissue (Gavas et al., 2021). This 
innovative approach leverages the unique 
properties of CNSs, such as their high surface 
area, ability to penetrate biological barriers, and 
biocompatibility (W. Liu & Speranza, 2019). 
These characteristics make them ideal carriers 
for drug delivery, potentially revolutionizing 

cancer treatment (Yao et al., 2020). The 
nanoscale size of these structures allows them 
to circulate through the body more efficiently, 
reaching even the most elusive cancer cells 
(Rasmussen et al., 2010). Moreover, CNSs can 
be engineered to respond to specific stimuli 
present in the tumor microenvironment, such 
as pH changes or overexpressed enzymes, 
enabling a more controlled and effective 
release of the therapeutic agents (El-Rasoul & 
Ahmed, 2010; Hoseini-Ghahfarokhi et al., 2020; 
Jiang et al., 2018; Shahabi & Raissi, 2017). 

CNSs in cancer therapy also open new 
possibilities for developing combination 
therapies (P. Manivasagan et al., 2022). By co-
delivering multiple drugs with synergistic 
effects, CNSs can enhance treatment efficacy 
while reducing the likelihood of drug resistance 
(R. X. Zhang et al., 2016). Additionally, these 
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nanostructures can be functionalized by 
targeting ligands, such as antibodies or 
peptides, to improve the selectivity of drug 
delivery (Yusuf et al., 2023). This targeted 
approach not only maximizes the impact on 
cancer cells but also minimizes adverse effects 
on normal cells, a significant limitation of 
traditional chemotherapy (Bajracharya et al., 
2022; Bu et al., 2010). 

Furthermore, CNSs have shown potential in 
diagnostic applications, enhancing the 
capabilities of imaging techniques used in 
cancer detection (Khazaei et al., 2023). By 
attaching imaging agents to CNSs, it is possible 
to achieve a higher resolution and contrast in 
imaging, aiding in early detection and accurate 
disease monitoring (Khazaei et al., 2023). This 
dual role of CNSs as therapeutic and diagnostic 
agents exemplifies the concept of theragnostic, 
an emerging field in cancer treatment that 
combines therapy and diagnostics (Doane & 
Burda, 2012; Jiang et al., 2018; Wei et al., 2012). 

The integration of CNSs into cancer treatment 
also highlights the importance of 
interdisciplinary collaboration in medical 
research (Mäurer et al., 2023). Developing and 
applying these nanostructures requires a deep 
understanding of material science, chemistry, 
biology, and medicine (Haleem et al., 2023). 
Researchers and clinicians must work together 
to optimize the design of CNSs for specific types 
of cancer, considering factors such as the tumor 
microenvironment, the type of cancer cells, and 
the patient’s overall health (Xiao & Yu, 2021). 

Despite the promising advancements, the 
application of CNSs in cancer treatment is 
challenging (Gavas et al., 2021). These 
materials' long-term biocompatibility and 
potential toxicity remain a concern (Gavas et al., 
2021). Further research is needed to 
understand the interaction of CNSs with 
biological systems over extended periods 
(Rahmati & Mozafari, 2019). Additionally, the 
manufacturing processes for CNSs must be 
scalable and cost-effective to make this 
technology accessible to a broader population 
(Yuan et al., 2019). 

 

Carbon Nanostructures: Characteristics and 
Types 

Each has unique properties and potential uses 
(M. M. Elsayed et al., 2019). At the nanoscale, 
carbon manifests in several distinct forms 
collectively known as carbon nanostructures 
(Slepičková Kasálková et al., 2021). These 
nanostructures are fascinating from a 
fundamental science perspective and for their 
vast potential applications (Khan et al., 2019). 
CNSs can be broadly classified into zero-
dimensional (0D) structures such as fullerenes, 
one-dimensional (1D) structures like carbon 
nanotubes, two-dimensional (2D) structures 
exemplified by graphene, and three-
dimensional (3D) structures like graphene 
foams and carbon nano-cones (Slepičková 
Kasálková et al., 2021). 

Fullerenes (0D) 

Fullerenes, the first CNSs to be discovered, are 
hollow and spherical cages of carbon atoms 
(Parambath et al., 2011). The most famous 
fullerene, C60, resembles a soccer ball of 60 
carbon atoms arranged in a truncated 
icosahedron (Gardini et al., 2018). These 
structures are known for their ability to act as 
electron acceptors and unique electronic 
properties (Illescas & Martín, 2006). Their 
geometry allows for the encapsulation of drugs, 
protecting them from enzymatic degradation 
(Parambath et al., 2011). The hydrophobic 
nature of fullerenes also facilitates the solubility 
of hydrophobic drugs, enhancing their delivery 
efficiency (Klupp et al., 2016). 

Carbon Nanotubes (CNTs) (1D) 

CNTs are cylindrical nanostructures with 
diameters as small as 1 nanometer (Elhissi et al., 
2012) (Figure 1). They can be single-walled 
(SWCNTs) or multi-walled (MWCNTs), 
consisting of one or several concentrically 
arranged graphene sheets (Herlem et al., 2019). 
Their properties vary significantly with their 
chirality and diameter, influencing their 
electrical conductivity, ranging from metallic to 
semiconducting (Herlem et al., 2019). CNTs 
provide a large surface area for drug 
attachment; they can be modified to improve 
solubility and biocompatibility (Chadar et al., 
2021).  
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Figure 1. Schematic diagram illustrating CNTs and drug 
loading  

Their needle-like shape enables them to 
penetrate cell membranes, effectively 
delivering drugs intracellularly (W. Ahmed et al., 
2018). 

Graphene (2D) 

Graphene is a single layer of carbon atoms 
arranged in a two-dimensional hexagonal lattice 
(Inagaki et al., 2014)(Figure 2). It has a high 
drug-load surface area and can be easily 
modified with functional groups to target 
specific cancer cells (Sattari et al., 2021). It is 
renowned for its exceptional electrical 
conductivity, thermal conductivity, and 
mechanical strength. It is the basic building 
block for other carbon allotropes, including 
graphite, CNTs, and fullerenes (Mbayachi et al., 
2021).  

 

 
Figure 2. Schematic diagram showing drug loading on the 
surface of CNSs  

Graphene oxide (GO), a derivative of graphene, 
provides additional oxygen-containing groups 
for drug attachment and improved dispersion in 
biological media (Radhapyari et al., 2020). 

Other CNSs 

Other CNSs include carbon nanofibers, nano-
horns, and nanofoams. Due to their complex 
morphologies, these structures often exhibit a 
combination of the properties of 0D, 1D, and 2D 
materials (Thakur et al., 2022). 

PROPERTIES OF CARBON NANOSTRUCTURES 

The properties of CNSs can be attributed to the 
solid covalent sp^2 bonds between carbon 
atoms, conferring strength and stability (Z. Li et 
al., 2019).  
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Table 1. Comparison between Covalent and Non-Covalent Functionalization techniques 

2012) ,al. et (Georgakilas Functionalization Covalent  al., et (Georgakilas Functionalization Covalent-Non
2012) ,al. et Yang 2012; 

Covalent bonding alters the electronic structure of CNSs, 
often resulting in the modification of their intrinsic 
properties. It provides robust attachment of functional 
groups but can disrupt the conjugated π-electron system, 
potentially affecting desirable properties such as 
conductivity. 

Non-covalent interactions preserve the electronic 
structure of CNSs, maintaining their unique properties. 
This type of functionalization relies on weak forces, such 
as π-π stacking, van der Waals interactions, and 
hydrogen bonding. 

functionalization covalent of Types functionalization covalent-non of Types 
Direct Functionalization: We are attaching functional groups 
directly to carbon atoms on the CNS surface, such as 
hydrogenation, hydroxylation, or oxidation reactions. 

Supramolecular Assembly: Encapsulation of CNSs by 
macrocycles or other large molecules. 

Cycloaddition Reactions: [2+1] or [4+2] cycloadditions that 
introduce new ring structures onto the carbon backbone. 

Polymer Wrapping: It is encasing CNSs with polymers 
that interact via non-covalent forces. 

Radical Reactions: Using free radicals to graft functional 
groups onto CNS surfaces. 

Surfactant Interactions: Using surfactants to improve 
CNS dispersion in solvents. 

 
Each type of CNS has unique electronic 
properties due to the quantum confinement 
and edge effects resulting from their specific 
dimensions and shapes (Slepicka et al., 2013). 

Mechanical Properties 

CNSs are among the most potent materials for 
tensile strength and elasticity  (Arash et al., 
2014). Their strength-to-weight ratios are 
unmatched by most other materials, making 
them ideal for reinforcement applications 
(Arash et al., 2014). 

Electrical and Thermal Conductivity 

CNTs and graphene exhibit high electrical and 
thermal conductivity (D. K. Lee et al., 2022). 
These properties are being exploited in various 
applications, from electronic devices to heat-
dissipation materials (D. K. Lee et al., 2022). 

Chemical and Physical Stability 

CNSs are chemically inert and thermally stable, 
which makes them suitable for harsh 
environments (W. Liu & G. Speranza, 2019). This 
stability also means they can be functionalized 
with various chemical groups to tailor their 
properties for specific applications (W. Liu & G. 
Speranza, 2019). 

Functionalization of Carbon Nanostructures 

Functionalization is key to enhancing the 
biocompatibility and targeting capability of 
CNSs (Z. Li et al., 2019). This can be achieved 
through covalent or non-covalent 
modifications, attaching targeting ligands, 
therapeutic agents, which can impart solubility 

in various solvents, introduce reactive sites, or 
confer specificity for applications such as drug 
delivery or sensing or imaging probes to the 
nanostructures (Dubey et al., 2021; B. Singh et 
al., 2016). Such modifications enhance 
selectivity and compatibility with matrices, 
improve solubility, reduce toxicity, and mitigate 
some inherent limitations, such as poor 
dispersion in solvents or polymeric matrices, 
providing a personalized approach to cancer 
therapy (Najafi rad et al., 2022). 

METHODS OF FUNCTIONALIZATION 

Functionalization of CNSs can be broadly 
classified into covalent and non-covalent 
methods (Guo et al., 2021) 

Characterization of Functionalized CNSs 

The characterization of functionalized CNSs is 
essential to understanding the changes in their 
properties (Sarode et al., 2023): 

• Spectroscopic Techniques: Raman 
spectroscopy, FTIR, and NMR provide insight 
into the types of functional groups attached 
and the extent of functionalization (Eid, 
2022). 

• Thermal Analysis: TGA can measure 
functional groups' stability and weight 
percentage (Basu, 2018). 

• Microscopic Techniques: TEM, SEM, and 
AFM help visualize the morphology and 
distribution of functional groups 
(Venkateshaiah et al., 2020). 
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• Applications of Functionalized CNSs (Abdalla 
et al., 2015; Palaniappan et al., 2023; 
Slepicka et al., 2013) 

• Functionalized CNSs have found applications 
across diverse fields: 

• Vb Polymer Composites: Improved 
dispersion and interaction with polymer 
matrices enhance the mechanical properties 
of composites (C. Li et al., 2022). 

• Drug Delivery: Functional groups can target 
CNSs to specific biological sites or facilitate 
drug loading and release (Yu et al., 2010). 

• Sensors: Functional groups can provide 
specificity and sensitivity in detecting 
various analytes (Khazaei et al., 2023). 

• Energy Storage: Functionalization can 
improve the electrochemical properties of 
CNSs in batteries and supercapacitors (Sun 
et al., 2017). 

Challenges in Functionalization (Bagheri et al., 
2022) 

While functionalization has expanded the utility 
of CNSs, several challenges remain: 

• Control over Functionalization: Achieving 
precise control over the density and 
orientation of functional groups (Geißler et 
al., 2021). 

• Scalability: Developing methods for 
functionalized CNSs production (L. Zheng et 
al., 2018). 

• Preservation of Inherent Properties: 
Minimizing the impact of functionalization 
on desirable CNS properties (Mohd Nurazzi 
et al., 2021). 

CNSs in Anticancer Drug Delivery 

Carbon nanostructures have emerged as a 
significant player in anticancer drug delivery, 
offering numerous advantages due to their 
unique properties (Ravi Kiran et al., 2020). 
Carbon nanostructures are utilized in anticancer 
drug delivery, including carbon nanotubes, 
graphene, fullerenes, and carbon nano-horns 
(Bagheri et al., 2022). Each has distinct physical 
and chemical properties that make them 
suitable for different applications (M. M. 
Ahmed, 2019; M. Elsayed, 2021; M. M. Elsayed 
et al., 2022). One of the key benefits of carbon 
nanostructures is their ability to deliver drugs 
directly to cancer cells (Madani et al., 2011). 

They can be functionalized by targeting 
moieties that recognize and bind to specific 
markers on the surface of cancer cells (Madani 
et al., 2011). CNSs can be tailored to respond to 
specific environmental conditions at disease 
sites, like the acidic environment of a tumor, 
triggering targeted drug release and minimizing 
side effects, thereby improving the efficiency of 
drug delivery and reducing side effects on 
healthy cells (J. Singh et al., 2023). Carbon 
nanostructures (CNSs) possess unique 
properties that are ideal for drug loading and 
controlled release in medical applications, 
particularly in delivering therapeutics (Jha et al., 
2020). CNSs like carbon nanotubes, graphene, 
and fullerenes have a high surface area-to-
volume ratio, enabling substantial drug 
molecule loading (Gergeroglu et al., 2020). Their 
surfaces can be chemically modified for drug 
attachment through covalent or non-covalent 
interactions, with the latter being gentler for 
sensitive drugs (Debnath & Srivastava, 2021; S. 
Zheng et al., 2022). Controlled drug release 
from CNSs is achievable via stimuli-responsive 
mechanisms, such as pH, temperature, and light 
sensitivity. For instance, a pH-sensitive drug 
delivery system can modulate the release rate 
of a drug depending on the pH of the local 
environment (J. H. Lee & Yeo, 2015). This is 
particularly advantageous in cancer therapy, as 
tumor tissues often exhibit a lower pH than 
normal tissues, enabling targeted drug release 
(Jagusiak et al., 2020; Zhao et al., 2023). The 
encapsulation of drugs within CNSs addresses 
another critical challenge in drug delivery 
(Kumari et al., 2014). Some drugs are inherently 
unstable or possess low solubility in biological 
fluids, which can limit their therapeutic efficacy 
(Adepu & Ramakrishna, 2021). Encapsulation 
within CNSs provides a protective shield against 
degradation and enhances solubility, thereby 
improving the bioavailability of these drugs 
(Naqvi et al., 2019; Zare-Zardini et al., 2022). 
Specific carbon nanostructures can absorb 
near-infrared light and convert it into heat, 
making them useful for photothermal therapy 
(Y. Chen et al., 2022). This can be combined with 
drug delivery for a synergistic effect in killing 
cancer cells (Sundaram & Abrahamse, 2020). 

Additionally, they can generate reactive oxygen 
species under light irradiation for 
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photodynamic therapy (Lagos et al., 2022). CNSs 
are explored in gene therapy and 
immunotherapy (Bates & Kostarelos, 2013; 
Mostafavi & Zare, 2022). Their versatility stems 
from the ability to be functionalized with 
various molecules.   

There is a growing interest in developing 
multifunctional CNS-based systems that 
simultaneously carry multiple drugs, diagnostic 
agents, and targeting moieties (Sajja et al., 
2009). This approach could lead to more 
effective combination therapies and enable 
theragnostic applications (combined therapy 
and diagnostics) (Masoudi Asil et al., 2023; Y. 
Zhang et al., 2018). The difficulty of addressing 
multidrug resistance (MDR) poses a significant 
obstacle in the fields of drug delivery and cancer 
therapy (Emran et al., 2022). Carbon 
nanostructures (CNSs) offer a potentially 
effective approach for tackling this problem 
(Curcio et al., 2020). Exploring the Concept of 
Multidrug Resistance (MDR): Multidrug 
resistance (MDR) is a recognized phenomenon 
in which cancer cells acquire the ability to 
withstand the effects of numerous medications, 
resulting in diminished responsiveness to 
chemotherapy (Fatehi Hassanabad, 2019). 

Resistance to chemotherapy frequently occurs 
because of the upregulation of drug efflux 
pumps, such as P-glycoprotein (Ughachukwu & 
Unekwe, 2012; Waghray & Zhang, 2018). These 
pumps actively expel medications from cancer 
cells, decreasing their intracellular 
concentration and reducing their therapeutic 
effectiveness (Takara et al., 2006). 

One of the key approaches to address multidrug 
resistance (MDR) involves augmenting the 
intracellular drug accumulation within cancer 
cells (Emran et al., 2022). Carbon 
nanostructures (CNSs), due to their significant 
drug-loading capacity, provide a viable 
approach to accomplish this objective (Xue & 
Liang, 2012). The encapsulation of 
chemotherapeutic medicines within carbon 
nanostructures (CNSs) can enhance drug 
delivery to cancer cells by increasing the 
amount of drug payload (Montané et al., 2020). 
This increased drug payload has the potential to 
overcome efflux mechanisms that may 

otherwise limit the effectiveness of the 
treatment (C. Wang et al., 2022). 

Controlled drug release 

Carbon nanostructures (CNSs) can be 
engineered in such a way that they can facilitate 
the controlled release of medications (Adepu & 
Ramakrishna, 2021). The approach as 
mentioned above confers benefits in the 
context of multidrug resistance (MDR) scenarios 
as it guarantees a continuous and extended 
duration of cancer cell exposure to the 
treatment drugs (J. Wang et al., 2017). By 
elongating the medication release profile, 
carbon nanostructures (CNSs) can potentially 
enhance the likelihood of surmounting drug 
resistance (Gavas et al., 2021). 

Efflux pump inhibition represents an additional 
pioneering strategy whereby carbon 
nanostructure (CNS) agents are employed for 
the targeted delivery of medication efflux pump 
inhibitors to neoplastic cells (Werle, 2008). 
These inhibitors can impede efflux pumps' 
action, inhibiting their ability to expel medicines 
(Alenazy, 2022). Medication retention within 
cancer cells can be enhanced by integrating 
efflux pump inhibitors with conventional 
chemotherapeutic medicines in carbon 
nanostructures (CNS)-based delivery systems 
(Borowski et al., 2005). 

Active targeting involves ligands or antibodies 
that can recognize biomarkers associated with 
multidrug-resistant (MDR) cancer cells, 
enabling the targeted targeting of these drug-
resistant cells (Tiwari et al., 2023; Yu et al., 
2010). This can be achieved by functionalizing 
drug delivery systems, such as nanocarriers, 
with these ligands or antibodies (Seidu et al., 
2022). Active targeting mechanisms guarantee 
the preferential accumulation of carbon 
nanostructures (CNS) in drug-resistant cancer 
cells, hence augmenting the drug exposure 
specifically to the resistant cell population 
(Bajracharya et al., 2022). 

Combination therapies, which involve 
integrating many therapeutic modalities inside 
carbon nanostructures (CNSs), has been 
identified as a viable and efficacious approach 
(Panchanathan Manivasagan et al., 2022). For 
example, in addition to chemotherapeutic 
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agents, carbon nanostructures (CNS) can 
transport compounds for photothermal or gene 
therapy (Zare et al., 2021). Utilizing a 
multimodal strategy can potentially enhance 
the probability of triggering apoptosis in cancer 
cells, including those that have developed 
resistance to conventional therapeutic agents 
(M. Zhang et al., 2017). 

The emergence of multidrug resistance (MDR) 
frequently stems from the presence of 
heterogeneous populations of tumor cells (Zare 
et al., 2021). Specific cells have the potential to 
exhibit drug resistance, whereas others do not 
possess this characteristic (Emran et al., 2022). 
The difficulty at hand can be effectively tackled 
through the utilization of carbon 
nanostructures (CNS)-based medication 
delivery, which guarantees the targeted 
distribution of therapeutic drugs to both drug-
resistant and drug-sensitive cancer cell 
populations within the tumor (Bu et al., 2010). 

Monitoring and Adaptation 

Advanced carbon nanostructures (CNS)--based 
drug delivery systems can integrate monitoring 
mechanisms for evaluating the response of 
drugs specifically within the tumor (W. Zhang et 
al., 2011). The provision of real-time feedback 
regarding the efficacy of treatments enables the 
implementation of adaptive approaches, such 
as the adjustment of drug release profiles or the 
adoption of alternative therapeutic 
interventions (Karimi et al., 2023). 

The safety and biocompatibility of CNSs must be 
prioritized while combating MDR (Kush et al., 
2023). Conducting comprehensive preclinical 
and clinical investigations is imperative to 
assess the prolonged impacts and potential 
toxicity associated with carbon nanostructure 
(CNS) interventions (Yamashita et al., 2012). 

Toxicity and Biodegradability 

The toxicity and biodegradability of carbon 
nanostructures (CNSs) are critical factors that 
significantly impact their application, 
particularly in biomedicine and drug delivery 
systems (Garriga et al., 2020). Understanding 
and addressing these concerns is essential for 
the safe and effective use of CNSs in clinical 
settings (W. H. De Jong & Borm, 2008). 

Toxicity of Carbon nanostructures (Du et al., 
2013; Kobayashi et al., 2017; Liu et al., 2013). 
CNSs can be internalized by cells, potentially 
leading to cytotoxic effects such as oxidative 
stress, inflammation, and cell death. The unique 
shape and size of CNSs may cause physical 
interference with cellular components and 
biological processes (Farmand et al., 2022). 

 

Factors Influencing Toxicity 

• Size and Shape: Longer CNSs have been 
associated with higher toxicity, similar to the 
effects of asbestos fibers (S. S. Gupta et al., 
2022). 

• Chemical Surface Modifications: 
Functionalization of CNSs can influence their 
toxicity. For example, covalently 
functionalized CNSs are generally less toxic 
than their non-functionalized counterparts 
(Jain et al., 2011). 

• Purity: The presence of metal catalyst 
residues from CNS synthesis can contribute 
to their toxicity (Bhat et al., 2022). 

In Vivo and In Vitro Studies 

Research has shown varying degrees of toxicity 
in both in vitro (cell culture) and in vivo (animal) 
studies. These studies help determine the safe 
concentration and exposure levels of CNSs (Di 
Ianni et al., 2022; Savage et al., 2019). 

Biodegradability of Carbon nanostructures  

CNSs are inherently resistant to biodegradation 
due to their strong carbon-carbon bonds, which 
poses a challenge to their elimination from the 
body and the environment (M. Chen et al., 
2017). Functionalizing CNSs with biodegradable 
groups or polymers can facilitate their 
breakdown in biological systems (Bianco et al., 
2011; Peng et al., 2020). Compositing CNSs with 
biodegradable materials can improve their 
overall biodegradability (Lin et al., 2011). 
Studies are exploring how enzymes and other 
biological agents can degrade CNSs. For 
instance, certain enzymes capable of breaking 
down carbon structures have shown the 
potential to degrade CNSs (Ibrahim et al., 2023). 

Regulatory and Safety Considerations (Wim H. 
De Jong et al., 2022; Riego Sintes et al., 2012; 
Sousa et al., 2020) 
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• Safety Assessments: Comprehensive toxicity 
and biocompatibility assessments are 
required for medical applications of CNSs, 
following regulatory guidelines. 

• Long-Term Effects: Understanding the long-
term effects of CNSs in biological systems is 
crucial, particularly their accumulation and 
potential chronic toxicity (Riego Sintes et al., 
2012). 

• Environmental Impact: The environmental 
impact of CNSs, particularly their persistence 
and accumulation, is an area of ongoing 
research and concern (Sousa et al., 2020). 

Regulatory and Clinical Translation (Đorđević 
et al., 2022; Foulkes et al., 2020; Hua et al., 
2018) 

• Regulatory Approvals: Rigorous clinical trials 
and regulatory approvals will be required to 
bring CNT-based drug delivery systems to 
the market. This includes proving their 
safety, efficacy, and advantages over existing 
delivery systems (B. Gupta et al., 2024). 

• Collaboration and Funding: Collaborations 
between academia, industry, and regulatory 
bodies, along with adequate funding, are 
necessary to advance the research from 
laboratory settings to clinical applications 
(Tanaka & Lopez, 2024). 

• Ethical and Legal Considerations: As with any 
emerging technology, ethical and legal 
considerations surrounding the use of CNSs 
in medicine must be carefully considered, 
particularly regarding patient safety and 
data privacy (Baran, 2016). 

Future Perspectives 

• Integration with Other Technologies: 
Integrating CNSs with other 
nanotechnologies, such as nanoparticle 
systems or biosensors, could lead to more 
sophisticated drug delivery systems 
(Masoudi Asil et al., 2023; Saito et al., 2022). 

• Personalized Medicine: Leveraging CNSs for 
personalized drug delivery, where treatment 
is tailored to the individual's genetic makeup 
and disease profile, holds great promise 
(Alghamdi et al., 2022). 

Research has shown that CNSHs can penetrate 
cell membranes efficiently, which is beneficial 
for intracellular drug delivery (Park et al., 2019; 

Tan et al., 2015). This property is beneficial for 
delivering drugs to cancer cells, where they can 
exert their therapeutic effect more directly 
(Gavas et al., 2021). Moreover, the high thermal 
conductivity of CNSHs has been utilized in 
photothermal therapy, where they convert 
near-infrared light into heat, causing localized 
destruction of cancer cells (Lagos et al., 2022). 

 

CONCLUSION 

Carbon nanostructures, such as CNSHs, 
represent a promising frontier in the field of 
targeted anticancer drug delivery due to their 
versatile tunable characteristics, capacity for 
functionalization, and adeptness in traversing 
biological barriers. Nonetheless, the translation 
of CNS-based therapies from experimental 
stages to clinical applications necessitates 
comprehensive investigations into their 
enduring safety profiles, environmental 
repercussions, and the ethical considerations 
associated with their utilization. 
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