RESEARCH ARTICLE

In vitro Apoptotic effects of the medicinal plants Achillea santolina and Raphanus sativus extracts on different cancer cell lines

Mohamed L. Salem¹, ²*, Reda M. Gaafar³, Reham N. Mohasseb², ³, Mohamed A. Abd-Elbaseer⁴

¹ Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
² Center of Excellence in Cancer Research, Tanta Teaching Hospitals
³ Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
⁴ Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.

ABSTRACT

The extracts of the medicinal plants Achillea santolina and Raphanus sativus have been reported to show anti-cancer effects in vitro. However, the cellular and molecular mechanism of these effects are not clear yet. To compare the apoptotic effects of these plant extracts on different cancer cell lines in vitro. The phenolic, flavonoids and antioxidant activity were determined in the crude extracts. Then, Caco2 (colon adenocarcinoma) HepG2 (hepatic carcinoma), MCF7 (breast cancer) and the normal WISH (amniotic cell line) were treated in vitro with different concentrations of crude extracts for 72 hours. The half maximal inhibitory concentration (IC₅₀) were detected by MTT assay, while cell cycle and apoptosis were assessed by flow cytometry. The methanolic extract of R. sativus seeds (cultivar Balady) showed higher phenolic content (791.98 mg/d.wt) and higher antioxidant activity (93%) than those of the ethanolic extract of A. santolina (340.23 mg/d.wt) and (72.72%), respectively. R. sativus methanolic extract showed lower flavonoids contents (1.025 mg/g d.wt) than A. santolina ethanolic extract (24.66 mg/g d.wt). Treatment of Caco2, HepG2, MCF7 and WISH cell lines with A. santolina extract showed IC₅₀ of 17.67 µg/ml, 15.12 µg/ml, 42.19 µg/ml and 50.99 µg/ml, respectively. While treatment of the same cell line with R. sativus showed IC₅₀ of 40.77 µg/ml, 27.42 µg/ml, 54.16 µg/ml and 86.37 µg/ml respectively. A. santolina and R. sativus extracts induced similar cell cycle arrest in Caco2 at G1 phase by 42.4%. This study indicates that A. santolina has a potent anticancer activity against the selected cancer cell lines.

Keywords: Achillea santolina, Raphanus sativus, Cell lines, Cytotoxicity, Cell cycle, Apoptosis

ABBREVIATION: Caco2, colon adenocarcinoma; HepG2, hepatic carcinoma; MCF7, breast cancer

INTRODUCTION

Phytochemicals compounds from different plant species have been used to treat cancer (Mahassni and Al-Reemi, 2012; Moreno et al., 2016). The effective compounds, in particular polyphenols and flavonoids are able to target a plethora of cellular and molecular pathways including reactive oxygen species (ROS), inflammation, cell cycle, apoptosis, invasion, angiogenesis (Thakur et al., 2014; Singh et al., 2016). In addition to these chemical components, certain plants contain other ingredients, which have been reported to possess anticancer effects (Sangthong et al., 2017). As such the antitumor effect of medicinal plants with different active
Anticancer effects of Achillea santolina and Raphanus sativus ...

Salem et al., 2019

ingredients is of paramount significance to explore new drugs.

A. santolina is a flowering wild plant from family Asteraceae, which is distributed particularly in the northern hemisphere (Khan, 1998; Si et al., 2006; Ebadi, 2006). The aerial parts of A. santolina contain volatile oils (Bader et al., 2003; El-Shazly et al., 2004), flavonoids and sesquiterpene lactone (Yusopov et al., 1979). Moreover, this species produces alkaloids, saponins, tannins, resins, sterols, carbohydrates, which have anti-inflammatory effects (Al-Snafi, 2013). The research of antitumor activity is local and not spread on this species in vitro (Ghavami et al., 2010; Elsharkawy, 2014; Choucry, 2016).

R. sativus belongs to family Brassicaceae and its common name is radish which have various medicinal properties. Their seeds has been used in traditional medicine as a diuretic, expectorant and anticancer agent (Graham et al., 1978; Kolonel et al., 2000). The methanol seeds extract of R. sativus exhibited significant cytotoxic effect, which led to the isolation and identification of the 4-methylthio-butanyl derivatives with antitumor effects (Kim et al., 2013). The nine ingredients of the extract showed high cytotoxic activity against cancer cell in vitro that consider the R. sativus as natural reference to compare with A. santolina extract beside cisplatin chemotherapy. Given that mechanisms underlying the antitumor effects of A. santolina and R. sativus cytotoxic are not clear. This study aimed to compare the anti-proliferative and antiapoptic activities of these two plants against different cancer cell lines types in vitro.

MATERIALS AND METHODS

Chemicals and reagents

Folin Ciocalteau, sodium carbonate, pyrogallol, aluminum chloride, potassium acetate, Quercetin, DPPH (2, 2 diphenyl-1-picrylhydrazyl), ammonium molybdate, sodium phosphate, sulphuric acid, dimethyl sulfoxide (DMSO), MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) were purchased from Sigma Chemical Company, (USA). RPMI 1640 medium, Phosphate Buffered Saline (PBS), FBS, trypsin- EDTA purchased from Lonza, company, (UK). Annexin V-FITC, (PI), binding buffer 1X (BD Pharmingen), Triton™ X100, purchased from BD company,(USA). RNase A (BIOBASIC, CANADA).

Plants collection and extraction

R. sativus seeds (cultivar: Balady) were obtained from Agriculture Research Center, Giza, Egypt. The wild plant A. santolina was collected from Mersa Matruh (North West Coast of Egypt) and identified in Ecology Department, Faculty of Science, Tanta University. Aqueous ethanol (80 %) was used to extract the shoots (leaves and flowers) of A. santolina according to Ghavami et al. (2010). Methanol (96 %) solution was used for extraction of radish seeds after grinding to fine powder according to Parekh et al. (2005). All extractions were kept for 5 days at room temperature. The extracts were filtrated and allowed to evaporate by rotary evaporator and then stored in -20°C as powder until use.

Determination of phenolic compounds

The total phenolic content was determined according to Malick and Singh, (1980). The 10mg crude plant extracts dissolved in dist H2O, then (0.5 ml) of stock were pipetted into test tubes and the volume was completed to 3 ml with distal water. Then, 0.5 ml of Folin reagent was added to each tube and incubated for 3 minutes. Two ml of 20% Na2CO3 solution was added to each tube, mixed and incubated for 1 hrs in dark at room temperature. The standard curve of pyrogallol was prepared by using different concentrations from 0.0 to 0.1mg/ml and the absorbance at 650 nm was measured against blank using Cole Parmer Spectrophotometer 1200 (Unico, USA). The data were expressed as milligram / gram. dry weight (g. dwt).

Determination of flavonoids

The total flavonoids content was determined according to the colorimetric method described by Chang et al. (2002). Plant
extract solutions (0.5 ml) were pipetted into test tubes, then 1.5 ml ethanol 95% was added. Then, 0.1 ml of 10% aluminum chloride and potassium acetate (0.1 ml) of 1 M was added to tubes and mixed well and 2.8 ml distilled water was added in all tubes and left at room temperature for 30 min. In case of blank, aluminum chloride was replaced by distilled water. Quercetin was chosen as a standard using a ten-point standard curve (0.0-0.1 mg/ml). The absorbance of each mixture was determined at 415 nm using Cole Parmer Spectrophotometer 1200 (Unico, USA). The data were expressed as milligram quercetin equivalents (QE)/g.

Determination of antioxidants activity using DPPH

The extract solution (0.1 ml) was added to 3.9 ml of DPPH solution. The mixture was shaken vigorously and allowed to stand in the dark at room temperature for 1 hr. The decrease in absorbance was monitored at 517 nm using Cole Parmer Spectrophotometer 1200 (Unico, USA) after 1 hr of the reaction. The blank consisted of 0.1 ml of methanol or ethanol (extraction reagent) and 3.9 ml of DPPH solution. The percentage of scavenged DPPH was calculated from the following equation (Sannigrahi et al., 2009).

\[
\text{DPPH scavenging %} = \left(\frac{A_o - A_s}{A_o} \right) \times 100
\]

Where \(A_o\) is the absorbance of the blank and \(A_s\) is the absorbance of sample.

Determination of the total antioxidant using phosphomolybdate assay (PMA)

The total antioxidant content was determined according to the method described by Kumaran, (2007). The extract solution (300
\(\mu\)l) was added to 3 ml of mixture of (0.05 g sodium phosphate, ammonium molybdate (0.05g) and sulphuric acid (0.33 ml) each dissolved in 10 ml distilled H\(_2\)O. The tubes were then incubated in water-bath at 95 °C for 30 min. After cooling of the solution, the absorbance was measured at 765 nm using Cole Parmer Spectrophotometer 1200 (Unico, USA).

Cancer cell lines

Normal human cell line and cancer human cell lines were obtained from VACSERA, Dokki, (Egypt). Three types of cancer human cell lines Caco2 (epithelial colorectal adenocarcinoma), MCF7 (human breast carcinoma) and HepG2 (human hepatocarcinoma) were used. The normal cell line WISH (derived from normal amnion) was used as a control cell.

Cell lines were grown in tissue culture T-75 flasks containing complete RPMI 1640 medium supplemented with 10% FBS, 1% (wt/vol) L-glutamate and 50
\(\mu\)g/ml gentamycin sulphate at 37°C in 5% CO\(_2\). The cells were maintained by routine sub culturing in T-75 tissue culture flasks. Cell viability was assessed by trypan blue exclusion assay.

Determination of IC\(_{50}\) concentrations

Adherent cells were harvested with 2 ml trypsin-EDTA 0.25% then counted by hemocytometer. After that cells were seeded into 96-well plates in 100
\(\mu\)l (10\(^6\)cell/well) for each well, the cells were then incubated in 5% CO\(_2\) at 37°C incubator for 24 hrs. Stock solutions of A. santolina and R. sativus dried extracts were prepared by dissolving 1mg of the extract powder in 1ml DMSO, while cisplatin concentration (ref. drug) was (1mg/ml). Serial dilutions (0.24, 0.49, 0.98, 1.95, 3.91, 7.81, 15.62, 31.25, 62.5 , 125, 250, 500
\(\mu\)g/ml) were prepared and 10
\(\mu\)l of each dilution was used in each well for treatment of cell lines. The plates were incubated for 72 hrs. at 37°C and in 5% CO\(_2\). After 72 hrs of incubation, the medium was discarded from the plates and then the plates were washed with 100
\(\mu\)l PBS, MTT assay was performed for determining the cytotoxicity by adding 25
\(\mu\)l of MTT (5 mg/ml) to the each well and the plates were then incubated for 4 hrs. Then, cells were washed with PBS and 150
\(\mu\)l DMSO were added to each well. The absorbance was measured at 545 nm using Plate Reader. The IC\(_{50}\) analysis were performed using Graph Pad Prism 6.0

Cell cycle analysis

For cell cycle analysis, the cells were cultured in 6 well plates. Each well was filled
with 3 ml of fresh medium containing 1×10^5/ml cells. After treatment with 1/10 of IC_{50} concentration, the seeded cells were incubated for 72 hrs. Then the cells were collected by cell scraper, and prepared for cell cycle measurement protocol. The cells were centrifuged and washed twice with cold 1× PBS. The cell pellets were fixed with 5 ml of 70% ethanol, then stored at -4º C for 48 hrs. After that, cells were resuspended in 200 µl of PI/ Triton × 100 staining solution (1000µl of 0.1 % triton+ 40µl PI + 20µl RNAse). The cells were then incubated at 37ºC for 15 min. and transferred onto ice. The tubes were gently vortexed and kept away from the light. Finally, the samples were measured using flow cytometry (BD FACSCanto™Pi).

Apoptosis assay
Caco2 cell lines were used for determination of the apoptosis. 3 ml of fresh complete medium containing 1×10^5/ ml cells were seeded in each well of 6 well plates and incubated for 24 hrs, then cells were treated with 1/10 of IC_{50} of A. santolina, R. sativus and Cis for 72 hrs, and then cells were harvested with a cell scraper and centrifuged at 10,000 xg at 4ºC for 15 min. The pellet was washed once in cold PBS, and centrifuged at 1800 rpm for 5 min. Then resuspended in 1X Binding Buffer at 1 x 10^6 cells/ml. 5µl Annexin V was added to 100µl of the cell suspension. The cell suspension were incubated 10-15 minutes at room temperature, then cells were washed in 1X Binding Buffer and resuspended in 200µl of 1X Binding Buffer. Then, 5µl staining propidium iodide solution was added. Finally, the samples were measured using flow cytometry (BD FACSCanto™Pi).

Statistical analysis
The data is expressed as Mean ± SD. The statistical analysis of cytotoxicity data and IC_{50} analysis were performed using Graph Pad Prism 6.0.

RESULTS
R. sativus phenolic activity is more pronounced than A. santolina

The results in Table 1 show that R. sativus extract has higher phenols content (791.98 mg/g.dwt) while A. santolina has a higher flavonoids contents (24.664 mg/g dwt).

Estimation of the antioxidant activity
The percentage of antioxidant activity as determined by DPPH and PMA is shown in Fig. 1. R. sativus ethanolic extract exhibited higher antioxidant activity (93%) than that of A. santolina (72.72%). On the other hand, the total antioxidant activity of the crude extract determined by PMA showed that the antioxidant activity was higher in A. santolina extract (15.8 mg/g = ascorbic acid equivalent mg/g. dwt) than that of R. sativus (8.64 mg/g ≈ ascorbic acid equivalent mg/g. dwt).

Table 1: The concentration of total phenols and flavonoids determined in the crude extracts of A. santolina and R. sativus.

<table>
<thead>
<tr>
<th>Compound</th>
<th>A. santolina Mean ± SD</th>
<th>R. sativus Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenols contents mg/g. dwt</td>
<td>340.23 ± 8.66</td>
<td>791.98 ± 79.85</td>
</tr>
<tr>
<td>Flavonoids compounds mg/g. dwt</td>
<td>24.66 ± 1.97</td>
<td>1.025 ± 0.077</td>
</tr>
</tbody>
</table>

Fig. 1: Antioxidant activity of A. santolina and R. sativus extracts

Determination of IC_{50} of the plant extracts
The IC_{50} of A. santolina, R. sativus and Cis are shown in Fig. 2. The A. santolina extract showed lower IC_{50} as compared to R. sativus and cisplatin IC_{50} in cancer cell lines (Caco2 & HepG2). While A. santolina IC_{50} was similar to
cisplatin IC\textsubscript{50} value in MCF7 cell line as shown in Table 2. The 1/10 of IC\textsubscript{50} concentration of A. santolina, R. sativus and Cis were used in cell cycle cell and apoptosis cell treatment.

Cytotoxicity assessment

The cytotoxic effects of A. santolina, R. sativus extracts on the different cell lines compared to Cis are shown in Fig. 2. The WISH cell line (normal cell line) was not significantly affected by treatment with the plant extracts A. santolina and R. sativus at (5 µg/ml) exhibited cell viability by 88.11% and 65.4%, respectively. While cisplatin shows high cytotoxic effect 54% viability cells was observed at the same concentration (Fig. 2A).

Treatment of Caco2 cell line with both extracts (5 µg/ml) A. santolina and R. sativus showed high cytotoxic effect 91.83 % and 94.02 % compared to exhibited by Cis has approach to (95.62%) (Fig. 2B).

Treatment of MCF7 cells with (5 µg/ml) concentration of A. santolina and R. sativus extracts showed 82.06% and 62.13% dead cells, respectively (Fig. 2C). The same concentration of cisplatin drug exhibited 80.39% of cells death. Treatment of HepG2 cells with (5 µg/ml) of both plant (A. santolina and R. sativus) extracts and cisplatin showed similar cytotoxic effect 58.53%, 58.19% 57.43 % dead cells, respectively (Fig. 2D).

<table>
<thead>
<tr>
<th>Cell line</th>
<th>A. Santolina IC\textsubscript{50} µg/ml</th>
<th>R. sativus IC\textsubscript{50} µg/ml</th>
<th>Cisplatin IC\textsubscript{50} µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wish</td>
<td>0.5099</td>
<td>0.8637</td>
<td>1.8090</td>
</tr>
<tr>
<td>Caco2</td>
<td>0.1767</td>
<td>0.4077</td>
<td>0.1280</td>
</tr>
<tr>
<td>MCF7</td>
<td>0.4219</td>
<td>0.5416</td>
<td>0.05858</td>
</tr>
<tr>
<td>HepG2</td>
<td>0.1512</td>
<td>0.2742</td>
<td>0.2398</td>
</tr>
</tbody>
</table>

Effect of plant extracts on cell cycles of the tumor cell lines

The DNA content of cancer cell lines (Caco2, MCF7 and HepG2) and normal cells (WISH) during cell cycle after treatment (for 72 hrs) with 1/10 of IC\textsubscript{50} of A. santolina, R. sativus extracts or Cis was determined. The graphs of fractional DNA content (PI fluorescence, X-axis) versus cell counts (Y-axis) are displayed in Figure 3. In case of WISH (normal cells), treatment with 1/10 of IC\textsubscript{50} of A. santolina or R. sativus extracts resulted in 40% and 23.2% cell accumulation in G2/M phase, while Cis treatment showed 75.5% arrest at G0/G1 as shown in (Fig. 3 B, C & D). Concerning the Caco2 cell line, treatment with A. santolina and R. sativus extracts induced similar cell cycle arrest at G0/G1 phase (42.4%) compared to normal cell line (WISH) (Fig. 3 G&H). However, Cis treatment exhibited 39.9% cell cycle arrest at G0/G1 phase (Fig. 3F).

In case of MCF7, the cell line treated with A. santolina extract showed 49% cell cycle arrest at G0/G1 phase (Fig. 3K), while treatment with R. sativus extract or Cis showed similar cell cycle arrest 61.7 % and 63.9%, respectively at S phase (Fig. 3 J&L).

Fig. 4: apoptotic effect measured by flow cytometry of 1/10 of IC\textsubscript{50} concentration of A. santolina, R. sativus and cisplatin on Wish and Caco2 cell line after incubation in CO\textsubscript{2} incubator for 72 hrs.
Fig. 2: Cytotoxic effects of treatment with different concentrations (A. santolina, R. sativus and Cis) on WISH normal cell, Caco2, MCF7 and HepG2 cancer cells.

Fig. 3: Cell cycle and fractional DNA content in control and Wish (normal) cell line, Caco2, MCF7 and HepG2 cancer cell lines treated with 1/10 of IC₅₀ of A. santolina, R. sativus extracts and cisplatin drug after 72h of incubation.
With regard to HepG2 cell line, the untreated cells showed 55.5% bulk at G2/M, while treatment with A. santolina extract and Cis drug increased cells bulk in sub-G0 to 69.9% and 44.2%, respectively. HepG2 cells treated with R. sativus extract showed 58.1% cell cycle arrest at S-phase (Fig. 3 N, O&P).

Apoptosis
The early apoptotic cells detection (FITC-Annexin V positive and PI negative) is shown in Fig. 4, which demonstrates apoptotic percentages of the cell line (Caco2) treated with 1/10 of IC50 of plant extracts and Cis drug. The Caco2 cells treated with 1/10 of IC50 of A. santolina and R. sativus extracts showed 9.6% and 18.2% apoptosis, respectively, while 24.3% apoptosis was shown with Cis drug treatment.

 DISCUSSION
The results of this study showed that the ethanolic and methanolic extracts of the A. santolina and R. sativus contain high total phenols and flavonoids content. High antioxidants activity of A. santolina ethanolic extract could be due to its higher flavonoids content. In contrast, the higher antioxidant activity present in R. sativus methanolic extract could be explained by its high content of phenolic compounds. This result is in consistence with the finding of Kim et al. (2015) and Jin et al. (2016).

Cytotoxicity analysis revealed that A. santolina ethanolic extract showed higher cytotoxic effect on Caco2 and HepG2 cancer cells at low concentration compared to that of R. sativus methanolic extract. Since the A. santolina extract has smaller IC50 than that of R. sativus extract and Cis drug, its IC50 concentration showed higher inhibitory effect on the proliferative activity of the Caco2 and HepG2 cancer cell lines more than on MCF7 cell line. This effect would be due to its higher flavonoids content and antioxidants activity. It has been shown that flavonoids, phenolic compounds and antioxidants in the volatile oil of Achillea species play a role in anti-cancer and anti-inflammatory effects (Abd-Alla et al., 2016). Recent studies showed that extracts of Achillea species greatly inhibited colon, breast and liver cancers (Elsharkawy, 2014; Choucry, 2017). The free radical scavenging in R. sativus seeds extract has been shown to have anti-proliferative effect on different cancer cell lines (Salah-Abbes et al., 2010).

Cell cycle distribution and apoptosis analyses of the used cancer cell lines treated with 1/10 of IC50 of A. santolina, R. sativus extracts and Cis drug showed a considerable effect on DNA content and cell cycle arrest at G1/S phase. The 1/10 of IC50 of A. santolina and R. sativus enhanced the cell arrest at the G1 checkpoint in Caco2 cell line. MCF7 cells treated with 1/10 of IC50 A. santolina induced 49% cell arrest at G0/G1. This also may due to higher antioxidant activity of flavonoids and phenolic compounds on G1 checkpoints. This result is in agreement with recent in vitro studies performed on different cancer cell lines which were treated with extracts of some medicinal plants (Glycyrrhiza glabra and Lepidium sativum) which contain high levels of polyphenols and flavonoid compounds. The plant extracts showed strong effect on G1 checkpoint arrest and induced high effect on cell apoptosis (Bortolotto et al., 2016), and also high apoptotic effect on breast cancer (Mahassni and Al-Reemi, 2013). However, our prove results effects similar in previous studies on Caco2 cell line of poly phenols on cell cycle G1 arrest and induce apoptotic effect on colon cancer cells (Huang et al., 2017; López de las Hazas et al., 2017).

The S- and M- phases are rigorously ordered in cyclic process, which allows correct duplication of DNA in the dividing cells without accumulating genetic abnormalities (Pucci et al., 2000). Treatment of MCF7 and HepG2 cell lines with 1/10 of IC50 of R. sativus induced S-phase arrest checkpoints. Similarly, 1/10 of IC50 treatment of Cis drug induced arrest in S-phase checkpoint in MCF7 cancer cells. The effect caused by 1/10 of IC50 of R. sativus extract could be due to the higher phenolic compounds. This result is consistence with what have been obtained by Luo et al. (2017).
They showed that phenolic compounds of the natural extracts induced cell arrest at S-phase in breast and colon cancer. The same finding has been found with HepG2 cancer cell line (Saleem et al., 2002). Other study showed G2/M phase cell arrest with sulforaphane compound found in \textit{R. sativus} methanolic extract (Pledgie-Tracy et al., 2007). The treated HepG2 cells with 1/10 of IC\textsubscript{50} of \textit{A. santolina} induce sub G0 phase apoptosis (Sánchez-Carranza et al., 2017).

The induction of apoptosis and necrosis in Caco2 cells treated with the extracts of \textit{A. santolina} and \textit{R. sativus} demonstrated that the 1/10 of IC\textsubscript{50} of \textit{R. sativus} treatment sowed higher apoptotic effect (18.2\%) than treatment with 1/10 of IC\textsubscript{50} of \textit{A. santolina} extract 9.6\%. This could be due to effect of higher phenolic content on cells at G1 phase which is the state preceding DNA replication in which factors such as cellular conditions (metabolism, signaling and cell size) influence cell cycle progression (Pucci et al., 2000).

CONCLUSION

\textit{A. santolina} and \textit{R. sativus} crude extracts both contain polyphenols, flavonoids and antioxidants with different ratios, which inhibit proliferation of the cancer cells as colon adenocarcinoma (Caco2), breast cancer (MCF7) and liver cancer (HepG2) \textit{in vitro}. The 1/10 of IC\textsubscript{50} of \textit{A. santolina} raised the percentage of G1-phase arrest in Caco2 and S-phase in MCF7 compared to cisplatin chemotherapy. It also increased apoptosis of the Caco2 cell line. This indicate that these natural extracts have potential effects on different cancer types comparable to cisplatin drug.

Acknowledgment

The cell culture and cytotoxicity analysis were performed at Science Way for Research Laboratory, AL AZhar University, Cairo, Egypt.

REFERENCES

Ghavami G, Sardari S and Shokrgozar MA (2010). Anticancerous potentials of \textit{Achillea} species against selected cell
Anticancer effects of *Achillea santolina* and *Raphanus sativus* ... Salem et al., 2019

Salah-Abbes JB, Abbes S, Abdel-Wahhab MA and Oueslati R (2010). *In-vitro* free radical scavenging, antiproliferative and anti-zearalenone cytotoxic effects of 4-(methylthio)-3-butenyl isothiocyanate from Tunisian *Raphanus sativus*. The
Anticancer effects of Achillea santolina and Raphanus sativus ...
Salem et al., 2019